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Abstract
Quantum–classical correspondence for the average shape of eigenfunctions
and the local spectral density of states are well-known facts. In this paper,
the fluctuations of the quantum wavefunctions around the classical value are
discussed. A simple random matrix model leads to a Gaussian distribution
of the amplitudes whose width is determined by the classical shape of the
eigenfunction. To compare this prediction with numerical calculations in
chaotic models of coupled quartic oscillators, we develop a rescaling method
for the components. The expectations are broadly confirmed, but deviations
due to scars are observed. This effect is much reduced when both Hamiltonians
have chaotic dynamics.

PACS numbers: 05.45.−a, 05.45.Mt, 03.65.Sq

1. Introduction

At the turn of the century the study of the quantum manifestations of classically chaotic systems
suffered a significant change. Earlier, spectral statistics were amply discussed and it was shown
that they follow the random matrix theory (RMT) predictions [1, 2]. The study of properties
of wavefunction, however, presents inherent difficulties arising from the dependence on the
basis used, forcing either to specify one or to define basis-independent quantities. Progress
has been made in this respect in the study of average properties of eigenstates [3–5] and of
the significant statistical deviations from RMT [9, 10]. Nevertheless, not much systematic
work exists on the eigenfunction fluctuations in dynamical systems [3]. In this work we shall
contribute to this last subject.

In a recent paper [5], it was found that the suitably rescaled overlaps between the
eigenfunctions (EF) of two arbitrary Hamiltonians H0 and H are well described in the

3 Permanent address: Centro de Ciencias Fı́sicas, UNAM, Cuernavaca, Mexico
4 Permanent address: Instituto de Fı́sica, BUAP, Apdo Postal J-48, 72570 Puebla, Mexico

0305-4470/03/051289+09$30.00 © 2003 IOP Publishing Ltd Printed in the UK 1289

http://stacks.iop.org/ja/36/1289


1290 L Benet et al

semiclassical regime by a classical phase-space integral. Specifically, if we define φα,E
(0)
α to

be the eigenfunctions and eigenvalues, respectively, of H0 and ψi,Ei those of H, one finds to
a good approximation

〈|〈φα|ψi〉|2〉 = g̃
(
E(0)

α , Ei

)
(1)

where g̃(ε, E) is given by

g̃(ε, E) = g(ε,E)

(2πh̄)dρ(E)ρ0(ε)
(2)

and g(ε,E) is

g(ε,E) =
∫

dp dqδ(H0(p, q) − ε)δ(H(p, q) − E) (3)

which was called in [5] the classical eigenfunction for fixed E. Here ρ0(ε) (ρ(E)) is the level
density of H0 (H) calculated by means of Weyl’s formula. By the symmetry of equation (1), the
local density of states can be calculated maintaining fixed ε in equation (2). For the details, in
particular about the way in which the lhs of equation (1) must be averaged to obtain meaningful
results, see [5]. This study was exemplified by two systems of anharmonic oscillators in one
dimension, one coupled and the other uncoupled. We shall use these results in the present
paper to analyse the fluctuations of the quantum wavefunctions around this classical limit in
the chaotic case by comparing them with a simple random matrix model, presented in the
next section. To be able to perform this comparison the component of the function has to be
rescaled in a way that recalls the unfolding of the spectra, in order to compensate for average
behaviour given by the classical limit. This rescaling has no free parameters and leads to a
model-independent (universal) width of fluctuations, which is tested in numerical calculations
in section 3.

2. A random matrix model

Random matrix models [1, 2] have a long history in the description of quantum systems
whose classical analogue is chaotic, and relate to predictions of Gaussian distributions of
wavefunctions [6, 8, 12] which have been discussed mainly in the context of billiards. Usually
when one attempts a description of chaotic systems by random matrices, the restrictions
implied by equations (1) and (2) are not present. Rather, one deduces the average properties
of the eigenfunctions given the structure of the random matrix ensemble in some particular
basis. Instead, here we choose pairs of matrices (H,H0) of size N × N in such a way that the
condition

〈|〈φi |ψj 〉|2〉 = Ii,j (4)

is always fulfilled, but the matrices are otherwise arbitrary. The angular brackets denote
the average over the ensemble of matrix pairs and Ii,j stand for any numbers given by
outside constraints such as (1). Under these circumstances, we wish to determine the full
distribution of the matrix elements 〈φi |ψj 〉. We then proceed to compare the predictions
of this random matrix model with numerical results on models similar to that studied
in [5].

To solve the above problem, we let ourselves be guided by the following considerations:
the overlaps we need to model, namely the 〈φi |ψj 〉, are nothing other than the matrix elements
of an orthogonal matrix (a unitary one in the case where time-reversal invariance is broken, but
this does not affect our conclusions). We therefore need a random matrix model for orthogonal
matrices of dimension N with prescribed expectation values for the intensities Ii,j . Note that,
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in the large-N limit, the Haar measure over the group of orthogonal matrices can be replaced,
up to corrections of order 1/N , by independent Gaussian distributions for all matrix elements
Oi,j , all having a variance 1/N . In other words, what we need is a random matrix model
where the average intensity Ii,j = 〈|Oi,j )|2〉 is given. If Ii,j � 1, we can consider 1/Ii,j as an
effective dimension and expect to get the desired result, up to corrections of order O(Ii,j ), if
we replace the average by a simple Gaussian average. We may then, to this level of accuracy,
take the Oi,j as independent Gaussian variables with variances given by Ii,j .

Note that we postulate a distribution for orthogonal matrices with the correct values for
Ii,j . This directly relates the width of the distribution of amplitudes to the corresponding
classical limit of the wavefunctions. For the particular case of a billiard [6] this variance is a
reciprocal area, i.e. a classical quantity. We do not actually derive this distribution, but simply
verify that it has all the required properties. If the classical wavefunction takes very large values
and the eigenfunctions of H do not have a sufficiently large number of components in the basis
of H0, it may happen that some Ii,j � 1. Clearly, for these overlaps the model will not apply;
we shall see later that this happens near peaks or singularities in the classical wavefunction,
but then we cannot really make any comparison with the specific system anyway. However,
for the vast majority of overlaps, we can expect that the amplitudes are Gaussian distributed
and if we divide the amplitude Oi,j by

√
Ii,j we will find a standard Gaussian.

What deviations from the above predictions should we expect from a theoretical point
of view? Clearly, scars [9] produce an excess of very small amplitudes, because a few
exceptionally large amplitudes pick up more of the intensity than expected from the classical
calculation. Would we also see the large amplitudes? Probably not in a statistical analysis
against our model, because these will mainly occur in the region where the classical function
is large and we will usually exclude this region: the condition Ii,j � 1 is violated there, unless
we reach very high spectral densities, which is scarcely possible in a numerical experiment. In
a real experiment, resolution might well make such a high-density region inaccessible as well.
If, on the other hand, localization occurs due to disorder or due to the fact that the system does
not cover the whole phase space on the Heisenberg timescale [11], then we may indeed also
see irregularities beyond the realm of very small amplitudes.

However, all deviations mentioned above should only be important if one of the
Hamiltonians, say H0, is integrable in the classical limit. If both are chaotic, and we exclude
situations in which the two Hamiltonians are, in some sense, closely related, we can expect
not to see any effect of the scars in the amplitudes. The reason for this can be understood in
terms of the traditional picture due to Berry [12] of the eigenfunctions in phase space: for a
chaotic Hamiltonian, they are expected to cover phase space in an essentially uniform way,
up to rather small concentrations on periodic orbits. In integrable systems, on the other hand,
eigenfunctions are localized on well-defined tori, with only half the dimension of the full
phase space. The overlap between two chaotic states is therefore far less likely to become
anomalously large than one between an integrable state and a chaotic one.

3. Numerical results

We now test the Gaussian property against anharmonic oscillator models. We shall choose the
expansion of a chaotic system in terms of an integrable one; in particular, we have chosen two
particles in a quartic oscillator potential. This ensures a system with scaling properties, for
which the classical properties do not change as a function of energy. We restrict our attention
to antisymmetric wavefunctions since in this case we reach the semiclassical limit much
more rapidly than otherwise. The calculation is performed using the basis of the uncoupled
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Figure 1. Averaged eigenfunction around (a) ψ100, (b) ψ500 and (c) ψ900, all three for H1 with
respect to H0 with the parameters given in the text, with E100 = 203.182, E500 = 576.267 and
E900 = 846.680, respectively. The smooth curve represents the corresponding classical EF. Note
the general exponential decay and oscillations in the classically forbidden region.

oscillators, which in turn we approximate in a harmonic oscillator basis [5]. The Hamiltonian
used is

H =
n∑

i=1

p2
i

2
+ α

n∑
i=1

x4
i + β

n∑
1�i<j

x2
i x

2
j + γ

n∑
1�i<j

[
xix

3
j + x3

i xj

]
(5)

where in this case n is equal to two. We have also considered the case n = 4 with overall
similar results [13]. We shall use two Hamiltonians: one with the same parameters as in [5],
namely α = 10, β = −5.5 and γ = 5.6, which we call H1; the other with the parameters
α = 10, β = γ = −4.15, which we call H2. The H0 Hamiltonian will have α = 10 and
β = γ = 0.

We analyse the eigenfunctions in terms of the classical eigenfunction as given in
equation (2) at fixed energy E. The integral is calculated by the Monte Carlo method. We
find very good agreement as shown in figure 1. There the classical EF and an average over
101 EFs of the perturbed Hamiltonian are plotted using the method of [5]. Note that the
quantum functions are not reliable at the upper end of the classical energy range of H0 for the
higher lying states, although their energies are quite reliable. At the lower end of the spectra,
on the other hand, the amplitudes are very good, and we find a consistent approximation to an
exponential decay of intensities in the classically forbidden region as shown in figure 1, with
some system-dependent oscillations (these disappear in the four-particle case [13]).
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Figure 2. Eigenfunction tail zones B and C considered for analysis. The extreme cutoffs are
determined by the quantum–classical agreement, and renormalized for unfolding. The centre
window is 4
 and 80
 width for the corresponding cases analysed here.

We now proceed to analyse the amplitude fluctuations. We do this in the wings of the
wavefunctions far from the peak, in regions where the classical function varies slowly and is
sufficiently small to ensure Ii,j � 1; of course, we restrict our attention to reliable amplitudes.
To this end, we first cut out the parts of the wavefunction which are either too high in energy
so that they are not reliable, or which lie outside the classically allowed region. We further cut
four states on either side of the singularity at the peak of the classical EF. We do this because
the fluctuations around the peak are large and the peak itself at energy E is a singularity of
the classical EF. We set the norm of the rest to one in both EF and the classical EF. Then we
proceed to rescale the EF dividing the quantum EF by the classical one,

C
j

i = 〈φi |ψj 〉√
g̃
(
E

(0)

i , Ej

) . (6)

Note that C
j

i is normalized to N, more precisely to N
j

eff , that is, the effective number of
components that we consider in the reliable zones described above. In practice, N

j

eff can
be considered as a constant in a window of perturbed energies Ej inside which we take
the average. The variance of C

j

i is one if the rhs of (6) corresponds to the random matrix
model (4). In order to compare the different rescaled EFs we normalize them to one, the
distributions of this normalized quantity are the object of the following analysis.

The corresponding regions in the wings, labelled B and C in figure 2, are the ones with
the best quantum–classical correspondence. We use the intensity shape instead of amplitudes
for clarity, but all the calculations were performed on the latter. In order to avoid the rapidly
varying region, for the cases shown below we drop a window of four mean energy level
spacings 
 centred in the eigenfunction for H1 and one of 80
 for H2; the end of the C region
is 400
 away from the centre for both Hamiltonians. (The values of 
 are, respectively,
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Figure 3. Amplitude distribution for 100 unfolded EF around the states with energies E100 =
204.013 (a), (b) and E900 = 846.680 (c), (d ) in zones B and C. The Gaussians with the same
moments as the distributions are indicated by the continuous lines. Note that (b) is plotted on a
semilogarithmic scale.

0.826 and 0.729.) As we cannot perform ensemble averages, we will perform energy averages
within these windows after dividing the amplitudes by the square root of the local average
intensity obtained from the classical function, which agrees well with the quantum average.
As the centre of each EF changes in energy, the window centre changes but its width remains
constant. The amplitude distributions we find, are plotted in figure 3 for the superposition of
the results of regions B and C on 101 EFs; for low-lying states the shape is far from Gaussian
while for high-lying states we find fair agreement with the Gaussian behaviour except for
the excess of small intensities, which we expect due to scars. Such scars were seen in the
two-body system as exceptional states with much narrower intensity distributions and smaller
participation ratios [5]; similar results are found for the four-body system [13]. Nevertheless,
a semi-log plot of the amplitude distribution shows a good parabolic shape in the wings, even
for the zone C in a low-lying state around ψ100 (see figure 3(b)). This shows that fluctuations
are more sensitive to non-classical effects than the average EF: compare the strong deviations
for the states near ψ100 in figure 3 with the reasonable agreement shown in figure 1 for the
same states.

We now test our assumption that scar effects are not seen when we expand the chaotic
Hamiltonian in a basis of another chaotic Hamiltonian, instead of an integrable one. For such
an expansion we put the EF of the H2 Hamiltonian in terms of the H1 EFs. The quantum–
classical correspondence is shown in figure 4. In this case the exponential decay in the
classically forbidden area shows a hump, for which we have no explanation. The B zone is
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Figure 4. Averaged eigenfunction around ψ500 for H2 Hamiltonian in the H1 basis with the
parameters given in the text and at energy E500 = 611.717. The smooth curve represents the
corresponding classical EF.

a

b

Figure 5. Amplitude distribution for 100 unfolded states around the unfolded EF with energy
E500 = 611.717 of the H2 Hamiltonian in the zones B (a) and C (b). The Gaussians with the same
moments as the distributions are shown by the continuous lines.

wider and in consequence the statistics are better as we show below. The amplitude distribution
in the same region as in the previous case fits the Gaussian better, as shown in figure 5. The
excess of small amplitudes decreases and the agreement is better in a wider energy regime.
A similar result is observed if we drop localized states in the statistics for the previous case.
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a

b

Figure 6. Histogram of the amplitude distribution in a window of width 20 energy units for
100 EFs around (a) ψ900 of H1 and (b) ψ500 of H2. The normalization corresponds to the number
of events per bin, the total number of events being 2525 and 2595 for (a) and (b), respectively. The
corresponding values of χ2 are χ2

16 = 12.289 and χ2
16 = 14.483. The continuous lines correspond

to Gaussian curves with the same moments as the histograms.

Beyond all these features, if we consider small windows in the tail of eigenfunctions we find
statistically good Gaussians for both cases. In figure 6 we show some of them. The window
width is of 20 mean level spacings in order to have a sufficient number of amplitudes (∼1000)

of the 101 EFs considered for the average. They have energies between 1000 and 1020 in
figure 6(a) for the state 900 of H1 and from 640 to 660 for the state 500 of H2 in figure 6(b).
The fluctuations in figure 6 are larger than in the previous figures, but all of them are inside
the statistical deviation, as shown by using the χ2 test per bin, which is χ2

16 = 12.289 for (a)
and χ2

16 = 14.483 for (b). For clarity, we plot the histograms with larger bins and normalized
to (total number of events) × (bin width). We cannot get such a good fit to the Gaussian
distribution for all energy ranges; the larger the window width, the worse the observed fit.

For the random matrix model the expected variance for Ci
k of equation (4) is one. In the

dynamical problem it fluctuates around one for the small windows in unperturbed energy. For
the large windows a tendency exists: in zone C this is to grow slowly from 0.95 for state ψ200

to 1.10 for state ψ800. In zone B the tendency is to fall from 1 to 0.90 in the same interval of
states. In zone A the variance fluctuates around 1. However the fluctuations are large and this
result is not conclusive.

4. Conclusion

We have analysed the fluctuations of quantum-mechanical eigenfunctions with respect to their
classical limit. Using a simple random matrix model, the amplitudes are shown to follow a
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Gaussian distribution whose width is determined by the classical limit and rescaled to unity.
This is confirmed by a numerical calculation using systems of two particles interacting through
anharmonic potentials after carrying out the proper rescaling and normalization; agreement
improves as we move up the spectrum, but more slowly for the fluctuations than for the average
EF. We further find evidence for scars in an excess of small amplitude values as compared
to the theoretical prediction if we express the eigenstate of the chaotic Hamiltonian in terms
of an integrable one. This effect decreases markedly when both Hamiltonians have chaotic
dynamics.
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